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Introduction
Artificial intelligence (AI) is considered to be the key to precision medicine and trans-
forming health care (Denny and Collins 2021). In line with other imaging disciplines, 
such as microscopy (Meijering et  al. 2016) and pathology (Colling et  al. 2019; Laak 
et al. 2021), images obtained from routine clinical procedures represent rich and min-
able datasets on specific tissue characteristics (Gillies et al. 2016; Aerts et al. 2014). This 
realization urged the development of AI-based technologies to exploit these wealthy 
data sources (Parmar et al. 2018; Hosny et al. 2018). Although practical issues concern-
ing data sharing, data safety and standardization are yet to be resolved (He et al. 2019; 
Currie and Hawk 2021), ongoing developments in AI will drive its implementation in 
the field of medical imaging (Currie and Rohren 2021). When it comes to application of 
AI-based technology for nuclear imaging modalities such as positron emission tomog-
raphy (PET) and single-photon emission tomography (SPECT), excellent reviews which 
discuss modality-specific potential and limitations are available from the recent litera-
ture (Hatt et al. 2021; Uribe et al. 2019; Zukotynski et al. 2021; Decuyper et al. 2021). 
A key asset of nuclear imaging modalities is their whole body field-of-view and hence 
the capacity to quantify the distribution of tracers targeting specific biological processes 
where several organs and tissues are involved. Furthermore, dynamic imaging in nuclear 
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The detection of occult infections and low-grade inflammation in clinical practice 
remains challenging and much depending on readers’ expertise. Although molecular 
imaging, like [18F]FDG PET or radiolabeled leukocyte scintigraphy, offers quantitative 
and reproducible whole body data on inflammatory responses its interpretation is 
limited to visual analysis. This often leads to delayed diagnosis and treatment, as well 
as untapped areas of potential application. Artificial intelligence (AI) offers innova-
tive approaches to mine the wealth of imaging data and has led to disruptive break-
throughs in other medical domains already. Here, we discuss how AI-based tools can 
improve the detection sensitivity of molecular imaging in infection and inflammation 
but also how AI might push the data analysis beyond current application toward pre-
dicting outcome and long-term risk assessment.
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medicine offers the possibility to temporally resolve systemic processes. Both aspects of 
nuclear imaging are extremely useful to develop a ‘systems biology’ approach based on 
nuclear imaging to characterize host’ immune responses in infection and inflammation.

AI methodology is evolving rapidly and it is beyond the scope of this review to pro-
vide a comprehensive overview on current concepts in image analysis. In general, AI-
based approaches can be divided into supervised and unsupervised learning methods. 
Supervised learning requires data which is considered a ground truth or a gold stand-
ard, like histopathology. Supervised learning therefore is a mathematical way to approxi-
mate a model using a labeled training dataset which is then optimized in iterative steps. 
Typically, validation and test datasets are needed to assess the accuracy of the devel-
oped model. Unsupervised learning is trained to recognize patterns in unlabeled data 
without ground truth information. In unsupervised learning, algorithms are searching 
for regularities that can be used to define relationships like groups with similar features 
in an unlabeled dataset. Furthermore, unsupervised learning methods are used for cap-
turing noise in data or to generate new data samples. Clustering methods like k-means 
are common unsupervised approaches to find patterns between data points in a dataset. 
More sophisticated approaches use, for example, trained neural networks which allow to 
model more complex relationships with only little assumptions (LeCun et al. 2015).

While in its early days, now is the time to also consider the potential roles of AI spe-
cifically in molecular imaging of infection and inflammation. ‘Precision medicine’ in the 
field of inflammation translates to early identification of patients at risk for inflamma-
tory diseases and tailored treatment duration based on individual characteristics of a 
patients’ immune system.

In recent years it became evident that the activation of the immune system requires 
metabolic reprogramming, especially in regard to glucose metabolism (Gaber et  al. 
2017), thus in principle leads to effects measurable with 2-[18F]fluoro-2-deoxy-D-glu-
cose ([18F]FDG) PET. Likewise, the spatial distribution of immune cells throughout the 
body determines the effectiveness of immune responses, which is assessable, for exam-
ple, by radiolabeled leukocyte scintigraphy. While extensively studied in the aspect of 
cancer immunotherapy, these effects are similarly important in inflammatory diseases 
including infections, autoimmune disorders and atherosclerosis.

An important aspect of inflammation is the emerging concept of trained immunity: 
long-term functional reprogramming of the innate immune cells which co-determines 
responses to subsequent triggers (Netea et  al. 2020a; Schultze et  al. 2018). The devel-
opment of trained immunity is determined by epigenetic reprogramming and profound 
rewiring of metabolic circuits in immune cells.

Current routine analysis of imaging techniques like [18F]FDG PET or radiolabeled leu-
kocyte scintigraphy rely on the visual detection of foci in symptomatic patients, which 
heavily depends on the readers’ reference. Given the pivotal role of metabolic repro-
gramming in a range of inflammatory conditions, it emerges that at present only the tip 
of the iceberg of the available information is extracted out of the acquired data.

The recent advances in AI might push the analysis of current imaging techniques 
toward a more comprehensive understanding of inflammatory diseases including ath-
erosclerosis and infections, to the detection of pathological immune responses even in 
asymptomatic patients on the long run.
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In this short communication we propose three potential tasks for AI, ranging from 
practical to more hypothetical, where AI-based technologies can be applied to improve 
current practice.

Artificial intelligence to improve detection

Over the past years, [18F]FDG PET/CT has established its central role in the diagno-
sis and follow-up of infectious diseases and inflammatory conditions (Slart et al. 2018a; 
Signore et al. 2019; Chakfe et al. 2020; Jamar et al. 2013). Based on the high sensitivity 
and favorable whole-body view, the range of clinical indications continues to expand and 
the questions to be addressed are increasingly complex. At these far-end applications 
in inflammation imaging, current PET technologies have probably met their limits of 
detection and discriminative power (Fig. 1).

This holds true particularly for infections at occult sites, low-grade infections or low-
grade inflammatory conditions that are diagnosed late and treated with delay (Hipfl et al. 
2021; Laohapensang et  al. 2017; Talha et  al. 2020). Although this concerns a minority 
of patients, these cases consume a lot of health care related services, multiple diagnos-
tic tests are being performed and prolonged treatment is required with increased like-
lihood to encounter complications. For example, the diagnosis of infectious (native or 
prosthetic valve) endocarditis currently requires a composite of clinical, microbiological 
and imaging (ultrasound and [18F]FDG PET) to accomplish reasonable sensitivity and 
specificity (Chakfe et al. 2020; Habib et al. 2015). However, this investment in diagnostic 
accuracy is mandatory as we have learned that insufficient treatment of even these small 
intravascular infectious foci is associated with increased mortality (Jaltotage et al. 2021; 
Chirillo 2021).

Moreover, in the premise of ‘precision medicine,’ (intravenous) antibiotic treatment 
durations tend to be shortened (Berrevoets et  al. 2019; Kouijzer et  al. 2021) to avoid 

Fig. 1  Artificial intelligence to improve detection. A graphical illustration of the typical dynamics of an 
immune response upon a trigger, with rapid increase, associated with increased glycolysis in effector cells 
which can be measured by [18F]FDG PET and expressed as maximum or mean standardized uptake values 
(SUVmax/mean). As soon as the causative trigger is cleared, inflammatory responses also include repair 
processes to gradually return to a state of tissue homeostasis
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overtreatment and reduce health care expenditure. Thus, discriminating persistent foci 
of active infection from tissue remodeling at the end of antibiotic or anti-inflamma-
tory treatment will be an increasingly relevant, but challenging task for [18F]FDG PET 
imaging.

As there is a need for improved detection of low-grade or localized infections, which 
inherent features of nuclear imaging techniques are limiting? In comparison with com-
puted tomography (CT) nuclear imaging techniques suffer from long acquisition times, 
inherently resulting in motion artifacts. Furthermore, nuclear imaging is constraint by 
radiation dose and the associated safety considerations, which together with the urge 
to detect low-grade of localized infection, call for further optimization of detection effi-
ciency of PET and SPECT systems. The introduction of new PET scanners with digital 
detector technology and a long-axial field of view of 100  cm or more provide signifi-
cant improvements in this regard. These developments have the potential to significantly 
reduce the data acquisition times in PET, which makes a high-resolution whole-body 
PET scan in less than 5  min possible (Alberts et  al. 2021; Filippi and Schillaci 2022). 
Besides that, the substantial advances of this generation of scanners also allow a better 
temporal and spatial resolution as well as reduction of the administered radiation dose.

The relatively poor spatial resolution of PET (3–4 mm) and SPECT (8–9 mm) hampers 
the accurate assessment of anatomical regions with respiratory and cardiac motion. This 
is particularly relevant for imaging subtle changes in signal intensity in the myocardium, 
for example when endocarditis is suspected; or discrimination of [18F]FDG uptake in 
aortic root complications after recent vascular graft surgery.

Cardiac and respiratory motion, however, are highly standardized movements that 
can be modelled using AI-based technologies (Fig. 2). These are particularly suited to 
reconstruct images by incorporating previously learned information that compensate 
for motion. Indeed, data-driven approaches for PET image reconstruction that com-
pensates for respiratory motion are increasingly available (Buther et  al. 2016; Feng 

Fig. 2  Potential AI workflow to improve image quality by cardiac and respiratory motion correction. The 
pre-learned, highly standardized movements of the heart and the lung can be integrated in the image 
reconstruction in order to optimize the image quality leading to advantages in the visual assessment by the 
nuclear medicine physician
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et al. 2019; Schleyer et al. 2011), paralleling developments in CT (Saeedan et al. 2021). 
Previously, electrocardiogram (ECG)-gated motion correction of [18F]-NaF uptake in 
coronary arteries in patients with myocardial infarction or stable angina had signifi-
cant impact on lesion quantification (Rubeaux et  al. 2016). Along the same line for 
endocarditis, more accurate detection of small infectious foci in the plane of cardiac 
valves would increase detection rates and allow better co-localization with findings 
on ultrasound or cardiac CT, which improves diagnostic accuracy (Hove et al. 2021). 
On a more general note, deep-learning methods to reconstruct whole body PET 
images without the signal-derived input for attenuation and scatter correction by its 
CT component are reported (Yang et al. 2021; Haggstrom et al. 2019), with non-infe-
rior image quality, but much faster reconstruction times. Although large-scale com-
parative studies supporting AI-based motion correction are lacking, these approaches 
demonstrated that pre-learned information can be incorporated in AI-based recon-
structions of PET acquisitions.

In addition to factors that affect the measured signal intensity, the presence of noise 
in PET and SPECT data impairs accurate visual assessment and diagnostic accuracy 
of scan images in low-count statistics and the detection of small foci with little signal-
to-noise ratio (Minarik et al. 2020). For example, radiolabeled autologous leukocytes 
for SPECT imaging have long been used to detect infectious foci and with sufficient 
specificity to discriminate infection from inflammation (de Vries et  al. 2010; Roca 
et al. 2010). However, its inferior image quality due to low-count statistics and high 
levels of noise resulted in a rapid take-over by [18F]FDG PET/CT for these indications 
(Jamar et al. 2013), as image quality and system sensitivity were preferred despite the 
use of a less specific tracer. AI-based technologies can be exploited to reduce noise 
in such settings, which will positively impact image interpretation. For PET imaging 
the assignment of a line-of-response (LOR) for accurate image reconstruction can 
be corrupted by non-perpendicular coincidences, resulting in uncertainties in posi-
tioning the input signal. A deep learning estimator has been developed to predict the 
depth-of-interaction of incoming photons in pixelated detectors, which resulted in 
improved performance (Zatcepin et al. 2020). Improved positioning of input signals 
for monolithic detectors has been improved using convolutional neural networks 
that integrates the charge of silicon photomultipliers to predict locations of non-per-
pendicular coincidences (He et al. 2021). Compton scattering in the detection crys-
tal results in incorrectly assigned LORs and contributes to system noise for PET and 
SPECT imaging. Deep learning algorithms trained on Monte Carlo simulation data 
showed improved LOR recovery rates and sensitivity by including accurate position 
of events in image reconstruction (Bergeron et al. 2014). Furthermore, in PET imag-
ing, prediction of adverse cardiovascular events has recently been studied through 
the implementation of transfer learning, which allows for data economization while 
boosting image recognition capabilities and broadening the horizon of network archi-
tectures that can be constructed (Vos et al. 2019).

Image denoising based on deep learning methods is applied in general image res-
toration in cases of low or lack of spatial input. Several studies have now shown 
potential to convert low-count to high-count PET or SPECT images using U-Net 
(Kaplan and Zhu 2019; Dietze et al. 2019) or ResNet (Gong et al. 2019; Cui et al. 2019) 
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algorithms. Lastly, on the hardware site of development, the new generation of long-
axis field-of-view PET scanners have an even better sensitivity (Alberts et  al. 2021; 
Badawi et al. 2019) which can also be exploited to increase signal-to-noise ratio.

Artificial intelligence to predict outcomes

Immune responses are a complex series of events that involve different immune cell 
populations and requires a concerted action in multiple body compartments (Spitzer 
et al. 2017; Chavakis et al. 2019). For example, upon infection, inflammatory monocytes 
are recruited from the bone marrow and spleen and increased myelo- and granulopoie-
sis should compensate for the loss of these effector cells in peripheral tissues (Hotch-
kiss et al. 2016). Indeed, most patients referred for nuclear imaging under suspicion of 
an infectious or inflammatory condition have symptoms and clinical signs indicative of 
systemic immune responses, such as fever, increased C-reactive protein and erythrocyte 
sedimentation rate and leukocytosis. The questions here are whether we can capture 
these systemic responses using molecular imaging and use this information to improve 
outcome prediction (Fig. 3).

The switch from a quiescent to an activated status inevitably comes with metabolic 
reprogramming of immune cells, resulting in increased glycolytic capacity (Netea et al. 
2020a; Arts et al. 2017, 2018). As [18F]FDG-PET is a highly sensitive technique to quan-
tify glycolysis on a whole-body scale, we and others have demonstrated that increased 
uptake of [18F]FDG-PET in organs involved in hematopoiesis and immune activation, 
e.g., bone marrow, spleen and vascular system, associates with the state of immune acti-
vation (van der Heijden et al. 2020; Bernelot Moens et al. 2016; Valk et al. 2016; Joseph 
et al. 2017; Stiekema et al. 2019; Ungar et al. 2020; Kalafati et al. 2020). Paralleling mech-
anisms might also play a role in the responsiveness of immune cells in anticancer immu-
nity (Kalafati et al. 2020; Netea and Joosten 2018; Schwenck et al. 2020; Seith et al. 2020). 
Increased [18F]FDG uptake in bone marrow or spleen, as substrate of systemic immune 
activation, are associated with improved clinical outcome in melanoma patients under 
immune checkpoint inhibitors (Seban et al. 2021). This effect could potentially also be 

Fig. 3  Artificial intelligence to predict outcomes
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observed in overacting autoimmune events by [18F]FDG PET (Spitzer et al. 2017; Kala-
fati et al. 2020; Flint et al. 2017).

In patients with atherosclerotic cardiovascular diseases there is already evidence that 
increased [18F]FDG uptake in the arterial wall, spleen and bone marrow predicts future 
occurrence of cardiovascular events (Emami et al. 2015). To the contrary, clinical stud-
ies in sepsis showed that patients with decreased glycolytic capacity in leukocytes have a 
worse clinical outcome (Cheng et al. 2016; Hotchkiss et al. 2013; Kaufmann et al. 2018), 
a phenomenon called ‘immune paralysis.’

Thus, as the whole-body field of view of PET allows to assess body compartments 
involved in the systemic response to infection or inflammation, which element hampers 
the analysis of these potentially predictive data? At present, the integration of this addi-
tional data on immune metabolism in multiple body compartments depends on the lim-
ited human capacity to deal with multi-dimensional data. Systems biology studies are 
integrating large-scale (‘omics’) data, e.g., from different tissues (Kidd et  al. 2014) and 
therefore are urged to implement AI-based technologies for data analysis (Camacho 
et al. 2018). These studies enabled a more comprehensive mechanistic insight in multi-
dimensional complex diseases (Yang 2020), such as cardiovascular disease (Lempiainen 
et al. 2018; Makinen et al. 2014; Shu et al. 2017; Slart et al. 2021). These studies demon-
strated that the net outcomes on patient level result from perturbations in multiple body 
compartment involving diverse cell types and molecular pathways. The integration of 
these different scales of data, in which the contribution of the individual components 
can vary from subject to subject, demonstrates that cardiovascular disease is promoted 
by increased inflammatory pathways in the liver, adipose tissue and vascular system 
(Libby et al. 2019), as well as by the immune response, which is not limited to the arterial 
wall as it is also detectable in the bone marrow and the spleen.

Similar to infections, effective anticancer immune responses require an integrated 
action from both innate and adaptive immune cells (Chiossone et  al. 2018) including 
their activation in local and distant body compartments (Spitzer et  al. 2017; Kalafati 
et al. 2020). These observations underscore the general concept that on a systems level, 
metabolism and immune responses are connected (Flint et al. 2017).

Thus, immune metabolism is a preeminent example of reciprocal interactions on a cel-
lular, organ and system level (Lercher et al. 2020) that impact inflammatory and infec-
tious diseases as well as the homeostasis of the immune system, as will be discussed later.

[18F]FDG PET is well-suited to measure metabolic activity across these multiple cir-
cuitries, provided that AI-based technologies are developed to extract and process these 
data in predictive models (Fig. 4).

Artificial intelligence to provide prognostic information

Pathogen and damage-associated molecular patterns are sensed by cells of the innate 
immune system, inducing rapid activation and non-specific responses to eliminate the 
trigger. A growing body of evidence suggests that, in addition to these rapid ‘first line-of-
defense’ responses, long-term functional reprogramming of innate immune cells occurs 
and co-determines responses to subsequent triggers. So, ‘immunological memory’ is 
no longer considered to be exclusive for cells of the adaptive immune system, but also 
occurs in innate immune cells, both in hematopoietic progenitor cells (central trained 
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immunity) and in differentiated cells such as monocytes, macrophages and natural 
killer cells (peripheral trained immunity) (Netea et al. 2020a; Schultze et al. 2021). These 
‘trained immunity’ phenotypes have implications for the response to future infections 
(Netea et al. 2020b). Central in the development of trained immunity is epigenetic repro-
gramming, which is closely intertwined with metabolic reprogramming, characterized 
by an increased glycolysis, glutaminolysis and mevalonate pathway, among others. This 
mechanism allows altered immune-metabolic circuits in immune cells to respond with 
faster and higher upregulation of aerobic glycolysis and subsequent cytokine production 
capacity upon subsequent infectious triggers (Dominguez-Andres and Netea 2019).

Environmental inflictions, and the associated inflammatory response on tissue level, 
culminate during life span and are considered an integral part of ageing (Lopez-Otin 
et al. 2013; Sugimoto et al. 2019). It is tempting to speculate that beyond the develop-
ment of whole body [18F]FDG PET as a predictive imaging classifier based on immune 
metabolic phenotypes, there might be a prognostic role for [18F]FDG PET to determine 
long-term outcome associated with chronic inflammatory conditions (Fig. 5).

In addition to trained immune cells, repetitively triggered stromal cells can also con-
vert into a state of chronic low-grade inflammation (Bekkering et  al. 2016a, b, 2018, 
2019; Leentjens et  al. 2018), with detrimental impact on long-term clinical outcomes. 
For example, endothelial cells of the vascular system, which are key in directing the 
trafficking of immune cells to inflamed tissues, also respond to systemic inflammatory 
mediators (Pober and Sessa 2007). Moreover, these endothelial cells are exposed to a 
multitude of noxes throughout a lifespan, e.g., hypercholesterolemia or hyperglycemia, 
inducing cell damage and low-grade inflammation aimed to maintain endothelial integ-
rity. The role of [18F]FDG PET imaging in large vessel vasculitis is established (Jamar 
et al. 2013; Slart et al. 2018b) and is currently explored for chronic inflammatory condi-
tions (van der Heijden et al. 2020; Noz et al. 2020; Valk et al. 2017). Defining a threshold 

Fig. 4  AI could be used to develop a predictive score calculated from the extracted information on the 
vascular, lymphoid and hematopoietic system. This score characterizes the level of systemic inflammation, 
for example, in a patient with suspected vasculitis and therefore supports the assessment of the nuclear 
medicine physician
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on this sliding scale from overt vascular wall inflammation, e.g., in the context of vasculi-
tis, associated with symptoms and representing a clinical entity, to low-grade inflamma-
tion, associated with chronic inflammatory conditions such as atherosclerosis, perhaps is 
a new prognostic task for [18F]FDG PET that comes within reach with the advent of AI-
based technologies (Fig. 6). Here the gain in image quality of new digital PET scanners 
and especially of the recently introduced long-axis field of view PET scanner might favor 
the evaluation of vascular wall inflammation by PET, as it allows to acquire dynamic 
data that can provide more accurate quantification of the biological process, in this case 
[18F]FDG uptake rates in cell types involved in vascular wall inflammation. Secondly, it 
can assess the involvement of primary and secondary lymphoid organs throughout the 
whole body in systemic diseases versus tissue-confined local inflammatory process.

Fig. 5  Artificial intelligence to provide prognostic information

Fig. 6  The extracted information about the vascular, lymphoid and hematopoietic system can be facilitated 
by AI to develop a patient-tailored prognostic score
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Similarly, as defects in metabolism are commonly associated with impaired outcomes 
in various conditions, such as impaired regulation of glucose homeostasis in type 2 dia-
betes (Bernelot Moens et al. 2016; Lee et al. 2018; Hotamisligil 2017; Norata et al. 2015) 
or obesity in anticancer immunity (Thaiss et al. 2021; Ringel et al. 2020) and atheroscle-
rosis (Bucerius et  al. 2012, 2014), such prognostic role might be requested from [18F]
FDG by clinical disciplines in the near future. As far as it concerns the immune system, 
this field is actively researched to develop therapeutic strategies (Mulder et al. 2019) to 
enhance or reduce inflammatory responses in anticancer immunity (Priem et al. 2020), 
autoimmune (Municio and Criado 2020) and infectious diseases (O’Neill and Netea 
2020; Netea et al. 2020c). The higher sensitivity of the whole-body PET scanner enables 
the acquisition of low-dose PET images below 1–1.5 mSv, allowing its more frequent use 
in non-oncologic diseases for risk stratification assessment.

How should AI-based technologies be implemented to facilitate the development of 
[18F]FDG PET as a tool to determine prognostic immune metabolic profiles? The chal-
lenge in such task lies in the discrimination of bona fide inflammation from mala fide 
inflammation. This difference is expected to be subtle, as the inflammatory response in 
a distinct context of disease is beneficial rather than pathological, and temporally apart 
from an identified trigger.

Accurate appraisal of subtle differences requires large datasets for training and sup-
porting ‘circumstantial evidence’ where possible. For example, it can be postulated that 
assessment of [18F]FDG uptake in the vascular wall as mala fide will be more accurate if 
not only metabolic activity in the hematopoietic system is taken into account, but also 
atherosclerotic calcifications and body composition in terms of subcutaneous and vis-
ceral adipose tissue versus muscle mass can be deduced from the low-dose CT (Laur 
et al. 2021) and incorporated in the risk assessment. Similarly, AI-algorithms are avail-
able to assess bone mineralization and emphysema score on low-dose CT (Ebrahim-
ian et al. 2021), which could determine the host’ long-term responses to environmental 
inflictions like smoking. As for now, such information is not incorporated in current 
practice yet. Along with training AI-algorithms on large datasets come the need for har-
monization, smart processing and modelling, each individual task is suited for AI-based 
technologies. In line with developments in CT imaging (Choe et  al. 2019), AI-based 
algorithms can be trained to overcome center- or vendor-related differences in recon-
struction settings (Arabi and Zaidi 2021) and allowing to extract radiomic features (Orl-
hac et al. 2018; Zwanenburg 2019).

Reiterating from the conceived potential of AI to transform healthcare (Denny and 
Collins 2021), contemplating whole body [18F]FDG PET images as huge interoper-
able datasets that meet the criteria of diversity and inclusion, implies that we need AI-
technology to open up these big datasets and exploit its potential to approach immune 
metabolism on a systems level in clinical settings.

Challenges and potential solutions
Despite the sheer limitless methodological and technological advancements in AI-
based technology, the widespread application of AI-tools in molecular imaging of infec-
tion and inflammation is facing some major challenges on its way into routine clinical 
use. One hurdle that will need to be overcome is to deal with the ‘black box’ stigma on 
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AI-based algorithms; the lack of explainable correlations between in- and output leaves 
physicians often hesitant to rely on AI-based output. In addition, the subtle differences 
between physiological and pathological and potentially high variations between indi-
vidual patients requires large datasets and/or labeled datasets based on ground truth, 
of which the latter is more difficult as it will require invasive procedures to obtain tissue 
samples to analyze immune cells’ metabolic profiles.

To address these issues, smaller studies with high translational design including flow 
cytometry, metabolomics and/or transcriptomic data from circulating immune cells or 
the hematopoietic system could provide proof-of-concept to correlate specific imag-
ing findings to immune metabolic features in relevant cell populations (e.g., Hotchkiss 
et  al. 2016). Subsequent studies can then build further upon these data and provide 
larger datasets for validation and to determine its value in real-life clinical setting. For 
such studies with large datasets, questions on harmonization of input data arise, which 
have partly been tackled in the EARL program for multicenter studies by the European 
Association for Nuclear Medicine. Moreover, computing higher order features from PET 
requires image normalization during data processing and training AI-based models on 
a wide range of scanner hardware can provide a solution that would be compatible with 
current deep-learning networks, provided that the computing power is sufficient. Nev-
ertheless, the input for predictive or prognostic AI-based models as discussed in this 
communication should be ‘supervised’ as only PET parameters computed from prede-
fined immune relevant organ systems, in line with current concepts on immune-metab-
olism, should serve as input data.

Another challenge will be the integration of the clinical experience from the nuclear 
medicine and radiology readers into a future AI-supported workflow of clinical decision 
making. The experience of the reader, who is also taking the case-specific clinical context 
into account, will be difficult to replace. Therefore at least in the coming few years, AI 
might support the clinical decisions if it is confirming the evaluation by the reading phy-
sician, but it is unclear how to proceed if human and AI-based assessment are coming to 
the contradictory results. In line with broader developments of AI-based technology in 
medical imaging, liability issues need to be addressed in the near future.

Conclusion
AI tools are increasingly used for a growing number of tasks in the imaging field rang-
ing from technical applications which improve the sensitivity of scanners to biomedi-
cal applications for holistic data analysis. As proposed above, AI has the potential to 
improve the detection of inflammatory diseases and predict prognosis and outcome of 
patients under various immune-mediated conditions (Table 1). Furthermore, these tools 
are capable to provide a deeper understanding of the basic molecular mechanisms of 
inflammatory diseases.

For a successful application in future health care in the context of personalized med-
icine the tight integration of the AI imaging tools with other diagnostic methods like 
genetic analysis, proteomics and metabolomics is the key to achieve reliable and impact-
ful data which improves treatment decisions and ultimately patients’ well-being and 
survival.
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cal immune metabolic 
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High efforts for data 
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AI analysis on big data pro-
vided by, e.g., large multi-
center studies or national 
health care providers
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