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Abstract 

Rationale:  Prostate cancer treatment response may be automatically quantified using 
a molecular imaging analysis platform targeting prostate-specific membrane antigen 
(PSMA).

Methods:  A retrospective analysis of patients with castration-sensitive prostate cancer 
who underwent PSMA-targeted molecular imaging prior to and 3 months or more 
after treatment was conducted. Disease burden was analyzed with aPROMISE, an artifi-
cial intelligence imaging platform that automatically quantifies PSMA-positive lesions. 
The calculated PSMA scores for prostate/bed, nodal, and osseous disease sites were 
compared with prostate-specific antigen (PSA) values.

Results:  Of 30 eligible patients, the median decline in prostate/bed, nodal, and osse-
ous disease PSMA scores were 100% (range 52–100%), 100% (range − 87–100%), and 
100% (range − 21–100%), respectively. PSMA score decline was significantly associated 
with PSA decline.

Conclusion:  Changes in aPROMISE PSMA scores are associated with changes in PSA 
and may quantify treatment response.
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Introduction
High-risk localized, recurrent, or metastatic CSPC patients receive androgen receptor 
(AR) axis inhibition and local therapy to disease sites. PSA changes traditionally gauge 
treatment response, but cannot discern lesion-level response (Scher et  al. 2016). Cur-
rently employed imaging biomarkers allow noninvasive disease measurement using 
standard imaging modalities, but suffer limitations despite anatomy-specific quantitative 
techniques (Schwartz et al. 1990; van Persijn van Meerten 2010; Ulmert et al. 2012; Mit-
sui et al. 2012; Anand et al. 2016; Anand et al. 2020).
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Disease-specific molecular imaging with PSMA-targeted radiotracers allows quantita-
tive spatial resolution of individual tumors with positron emission tomography (PET) 
when combined with computed tomography (CT). PSMA PET-CTs are increasingly 
used for prostate cancer staging and can quantify treatment response (Fanti et al. 2020; 
Gafita et al. 2022). [18F]DCFPyL is a PSMA-targeted radiotracer with exceptional sen-
sitivity and specificity for lesion detection (Morris et al. 2021; Pienta et al. 2021). Pros-
tate cancer molecular imaging standardized evaluation (PROMISE) criteria provides a 
standardized framework for classifying and quantifying PSMA tracer-avid disease (Eiber 
et al. 2018). Automated PROMISE (aPROMISE) is an AI platform that enhances PROM-
ISE’s approach by auto-segmenting organs, quantifying radiotracer uptake in reference 
organs, identifying pathologic lesions, and quantifying lesion uptake to facilitate calcula-
tion of PSMA scores that take into account both lesion volume and standardized uptake 
values (SUV) in specific anatomic regions (Nickols et al. 2022; Johnsson et al. 2022).

Materials and methods
Clinical data for CSPC patients treated from 2018 onwards were reviewed. Patients who 
had both baseline and follow-up PSMA PET-CTs at least 3 months after treatment ini-
tiation were identified. PSMA PET-CTs were read by a nuclear medicine physician for 
baseline and follow-up disease assessment.

aPROMISE was used to identify, quantify, and calculate changes in PSMA tracer-
avid disease (Fig. 1) (Calais et al. 2022). Patient anatomy was auto-segmented from the 
low-dose CT portion of the PSMA PET-CT using a convolutional neural network 
(CNN) trained on CTs with expertly defined anatomy. Auto-segmented liver and aorta 
structures were overlayed on the PET dataset to calculate reference standard uptake 
values (SUVsref) from the liver and aorta SUVsmean, which were then used to identify 
other normal tissues. Putative lesion identification was divided into hot spot detection 
and segmentation phases. Hot spot detection utilizes a second CNN trained on 
expertly annotated PSMA PETs. The segmentation phase uses an adaptive threshold 

Fig. 1  aPROMISE workflow. Anatomy is auto-segmented, radiotracer avid lesions are identified and 
auto-segmented, and then, the CT and PET image sets are overlaid to obtain annotated and quantifiable 
lesions. Sagittal PSMA PET-CT slices before and after therapy for a patient are shown



Page 3 of 9Duriseti et al. European Journal of Hybrid Imaging             (2023) 7:7 	

based on contextual information from the two deployed CNNs (Fig. 2). The hot spot 
detection algorithm has high sensitivity to minimize the number of lesions that miss 
detection and require manual contouring. A nuclear medicine physician assists the 
process by reviewing auto-segmented lesions to identify true versus fals positives. A 
PSMA score for the selected set of lesions was calculated as the product of the indi-
vidual lesion volume and SUVmean, normalized by the SUVmean of reference tissue. An 
anatomic compartment PSMA score for prostate/bed, nodal, or osseous disease was 
calculated as the sum of individual lesion PSMA scores in the compartment 
(e.g., �

Lymph Nodes
PSMA score× Uptake Volume = Lymph Node PSMA Score ). An addi-

tional composite score was calculated as a sum of the compartment PSMA scores. A 
Pearson’s R test was performed for total PSMA scores, as well as for the prostate/bed, 
nodal, and osseous compartment PSMA scores. Significance was determined by a 
2-tailed T test.

Results
Thirty patients were eligible for analysis. All patients demonstrated a decline in PSA 
before the second PSMA PET-CT. The median interval between PSMA PET-CTs was 
8 months (range: 3–30). Baseline prostate/bed, regional nodal, non-regional nodal, and 
osseous disease was present in 27, 25, 9, and 18 patients, respectively. Treatment details 
were available for 29 patients. Of these, 4 patients had prior prostatectomy with 1 patient 

Fig. 2  PROMISE and aPROMISE uptake value normalization comparison with schematic example of 
aPROMISE normalized SUV calculation
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experiencing bed recurrence. Patient clinicopathologic data, treatment course, and bio-
chemical outcome information are shown in Table 1.

Changes in composite and compartment-specific PSMA scores are shown in Table 2. 
Median prostate/bed, nodal, osseous, and composite PSMA scores at baseline were 21.6 
(range: 0.9–150.5), 5.3 (range: 0.1–105.6), 2.2 (0.1–96.2), and 9.7 (0.2–106.8), respec-
tively. Median PSMA scores for prostate/bed, nodal, osseous, and composite at follow-
up PSMA PET-CT were 0 (0–6.2), 0 (0–91.1), 0 (0–36.2), and 0 (0–91.6), respectively. 
Baseline prostate/bed PSMA scores were significantly correlated with baseline PSA val-
ues (p < 0.001); however, neither nodal (p = 0.53) nor osseous (p = 0.65) baseline PSMA 
scores were correlated with baseline PSA values.

The median PSA decrease was 100% (range: 68–100%). Changes in PSMA scores were 
significantly correlated with corresponding decreases in PSA for composite and nodal 
disease, but not for prostate/bed or osseous disease (Table 2). Patient-level changes in 
PSMA scores and PSA are shown in Fig. 3. Patient 2 and Patient 13 had an increase in 
osseous, and nodal and composite PSMA scores, respectively, despite PSA decline after 
treatment. The osseous and prostate PSMA scores before/after treatment for Patient 2 
were 0.62/0.70 and 27.5/0, respectively; thus, the before/after composite PSMA score 
of 28.1/0.7 was only minimally affected by increased osseous disease uptake. The osse-
ous, lymph node, and prostate PSMA scores before/after treatment for Patient 13 were 
0.99/0.48, 48.71/91.06, and 20.12/0, respectively; thus, the before/after composite PSMA 
score of 69.72/91.55 was heavily weighted by increased nodal disease uptake. Absolute 
changes in PSMA scores are shown in Fig. 4.

Conclusion
Changes in prostate cancer disease burden as identified by PSMA-targeting radiotrac-
ers correlate with PSA response, but few studies have shown correlation between PSA 
changes and qualitative PET-based disease response (Hope et al. 2017; Schmidkonz et al. 
2018; Zacho and Petersen 2018; Afshar-Oromieh et al. 2018; Aggarwal et al. 2018; Ettala 
et  al. 2020; Emmett et  al. 2019; Shagera et  al. 2022). For instance, RECIP 1.0 assesses 
response for patients with castration resistant prostate cancer treated with targeted radi-
onuclide therapy (Gafita et al. 2022). Here we present a method to automatically anno-
tate and measure lesion changes for patients with CSPC using a previously validated 
tool for PSMA radiotracer uptake quantification. While there are no prospective data to 
demonstrate utility of PSMA-targeted PET-CTs for response assessment, the quantifi-
able PSMA score changes in this study were significantly correlated with PSA decline 
(Fanti et al. 2021).

PSMA expression is down-regulated by AR axis activation and up-regulated by its 
suppression, which may complicate response assessment of immediate post-treatment 
PSMA PET-CTs (Hope et  al. 2017; Lückerath et  al. 2018). Initial responses to AR-
directed therapy as assessed on PSMA PET-CT were previously evaluated in small stud-
ies with variable time courses (Hope et  al. 2017; Zacho and Petersen 2018; Aggarwal 
et al. 2018; Ettala et al. 2020; Emmett et al. 2019; Wondergem et al. 2020; Plouznikoff 
et  al. 2019). These studies report inter-patient, intra-patient, and intra-patient inter-
lesion radiotracer uptake heterogeneity after AR-directed therapy, which further com-
plicates global interpretation of treatment efficacy. Discordance between changes in 
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Table 1  Patient clinicopathologic data and treatment course

Patient 
number

Disease 
timing

miTNM at 
diagnosis

Prostate/
bed 
disease

Regional 
nodal 
disease

Non-
regional 
Nodal 
diseaseˤ

Osseous 
disease

Imaging 
interval 
(months)

Interval 
treatment

% 
reduction 
in PSA

1 De novo T3bN1bM0 Yes Yes No No 30 ADT + radio-
therapy

100

2 De novo T2mN0M1b Yes No No Yes 14 Sur-
gery + ADT + radi-
otherapy

100

3 De novo T2uN0M0 Yes No No No 13 Surgery 84

4 Recur-
rence

T2mN1bM0 Yes Yes No No 10 ADT + radio-
therapy

99

5 De novo T2mN1bM1b Yes Yes No Yes 21 ADT + radio-
therapy

100

6 Recur-
rence

T2mN0M1b Yes No No Yes 3 ADT + radio-
therapy

100

7 De novo T2mN1aM0 Yes Yes No No 3 Surgery 92

8 De novo T3bN1aM1a Yes Yes Yes No 20 Sur-
gery + ADT + radi-
otherapy

95

9 De novo T3bN1bM1a Yes Yes Yes No 21 Surgery + ADT 92

10 De novo T3aN1aM1b Yes Yes No Yes 11 ADT + radio-
therapy

100

11˘ Recur-
rence

T0N0M1b No No Yes Yes 12 ADT + radio-
therapy

100

12˜ Recur-
rence

T0N1aM0 No Yes No No 12 Unknown˜ Unknown˜

13 De novo T3bN1bM1b Yes Yes Yes Yes 4 ADT 69

14 ˠ De novo T3bN1bM1b Yes Yes No Yes 5 ADT + radio-
therapy

100

15 De novo T3bN0M1b Yes Yes Yes Yes 7 ADT + radio-
therapy

83

16 De novo T3bN1bM1b Yes Yes No Yes 7 ADT + radio-
therapy

98

17˘ Recur-
rence

TrN1bM1b Yes Yes No Yes 15 ADT + radio-
therapy

100

18 De novo T2uN1aM1b Yes Yes No Yes 26 Sur-
gery + ADT + radi-
otherapy

100

19 De novo T3bN1bM1b Yes Yes No Yes 7 ADT + radio-
therapy

100

20 De novo T2mN1aM1b Yes Yes No Yes 7 ADT + radio-
therapy

100

21 De novo T3bN1aM1b Yes Yes No Yes 7 ADT + radio-
therapy

100

22 De novo T2mN1aM0 Yes Yes No No 7 ADT + radio-
therapy

100

23 De novo T2mN1bM1a Yes Yes Yes No 7 ADT + radio-
therapy

100

24 De novo T3bN1bM1b Yes Yes No Yes 18 ADT + radio-
therapy

100

25 De novo T2mN0M1b Yes No No Yes 9 ADT + radio-
therapy

100

26 De novo T2mN1aM0 Yes Yes No Yes 6 ADT + radio-
therapy

99

27 De novo T2mN0M1b Yes No No Yes 7 ADT + radio-
therapy

100

28˘ Recur-
rence

T0N1bM1a No Yes Yes No 7 ADT 100

29 De novo T2mN1bM1a Yes Yes Yes No 8 ADT + radio-
therapy

100
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Table 1  (continued)

Patient 
number

Disease 
timing

miTNM at 
diagnosis

Prostate/
bed 
disease

Regional 
nodal 
disease

Non-
regional 
Nodal 
diseaseˤ

Osseous 
disease

Imaging 
interval 
(months)

Interval 
treatment

% 
reduction 
in PSA

30 De novo T2mN1bM1a Yes Yes Yes No 7 ADT + radio-
therapy

97

˘Patients with recurrent disease who had undergone prior prostatectomy

˜Patient 12’s treatment course and PSA response was not available for review

ˠPatient 14 had concurrent lung metastases at initial PSMA PET-CT

ˤNon-regional nodal disease was any nodal disease above the bifurcation of the common iliac arteries

Table 2  The percent decrease in each PSMA score was calculated from the quantified pre-
treatment and post-treatment PSMA PET-CT for the total composite and each anatomic 
compartment

A Pearson R correlation coefficient was calculated between the percent decrease in the PSMA score, and PSA was calculated 
and is shown. “N/A” indicates that the patient did not have relevant disease that could be scored for that anatomic 
compartment

˜Patient 12’s treatment course and PSA response was not available for review

ˠPatient 14 had concurrent lung metastases at initial PSMA PET-CT

Patient number Lymph node 
% change

Osseous 
disease % 
change

Primary (prostate or 
prostate bed) % change

Total 
composite % 
change

% decrease PSA

1 − 100% N/A − 100% − 100% − 100

2 N/A 14% − 100% − 97% − 100

3 N/A N/A − 100% − 100% − 84

4 − 66% N/A − 100% − 70% − 99

5 − 100% − 47% − 100% − 100% − 100

6 N/A − 87% − 100% − 89% − 100

7 N/A N/A − 100% − 100% − 92

8 − 100% N/A − 100% − 100% − 95

9 − 62% N/A − 100% − 94% − 92

10 − 100% − 100% − 100% − 100% − 100

11 − 100% − 75% N/A − 76% − 100

12˜ − 20% N/A N/A − 20% Unknown

13 87% − 45% − 100% 31% − 69

14ˠ − 96% − 62% − 100% − 70% − 100

15 N/A − 35% − 100% − 98% − 83

16 − 100% − 80% − 41% − 49% − 98

17 − 100% − 100% N/A − 100% − 100

18 N/A − 100% − 100% − 100% − 100

19 − 100% − 100% − 100% − 100% − 100

20 N/A N/A − 100% − 100% − 100

21 − 100% − 64% − 100% − 98% − 100

22 − 100% − 100% − 100% − 100% − 100

23 − 100% − 100% − 100% − 100% − 100

24 − 100% − 100% − 100% − 100% − 100

25 N/A − 100% − 100% − 100% − 100

26 − 100% − 100% − 95% − 98% − 99

27 N/A − 100% − 95% − 95% − 100

28 − 59% N/A N/A − 59% − 100

29 − 100% N/A − 100% − 100% − 100

30 − 100% N/A − 52% − 56% − 97

Pearson R 0.95 0.38 − 0.06 0.61

p value 4 E-10 0.09 Not calculated 5 E-4
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anatomically stratified PSMA scores and PSA were also observed here. Patients 2 and 13 
had PSMA score increases. While the percent change in osseous PSMA score for Patient 
2 was + 14%, this represented a raw change from 0.6 to 0.7. By contrast, Patient 13 had 
an increase of the nodal PSMA score of 87%, which represented a raw change from 48.7 
to 91.1. This impacted the composite PSMA score and was qualitatively appreciated on 
imaging. Thus, utilization of PSMA score percent change may only be relevant above a 
certain raw score threshold. These cases also demonstrate how PSA changes may not 
reflect disease response at the individual lesion level, thus underscoring the need for 
imaging biomarkers that assess response at the lesion level.

It remains unclear whether aPROMISE may serve as an imaging biomarker and 
how these data affect clinical outcomes or provider decision-making. Additionally, 
as our approach was geared toward high sensitivity for lesion detection, clinical guid-
ance to determine true versus false positive disease is required. The putative concord-
ance between PSA and PSMA imaging response justifies PSMA PET-CT inclusion into 
prospective studies as a method to stratify therapeutic approaches. Given the few dis-
cordances between PSA and PSMA score changes here, additional work to track and 
compare changes at the lesion-specific level to assess intra-patient, inter-lesion hetero-
geneity is warranted.

Abbreviations
PSMA	� Prostate-specific membrane antigen
CSPC	� Castration-sensitive prostate cancer
PSA	� Prostate-specific antigen
PROMISE	� Prostate cancer molecular imaging standardized evaluation
AI	� Artificial intelligence
PET	� Positron emission tomography

Fig. 3  Percent change in PSA and prostate/bed, nodal, and osseous disease PSMA scores for each patient

Fig. 4  Absolute raw changes in PSMA scores and PSA after treatment
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