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Abstract

Background: Machine learning (ML) represents a family of algorithms that has
rapidly developed within the last years in a wide variety of knowledge areas. ML is
able to elucidate and grasp complex patterns from data in order to approach
prediction and classification problems. The present narrative review summarizes
fundamental notions in ML as well as the evidence of its application in standard
cardiac imaging and the potential for implementation in cardiac hybrid imaging.

Results: ML, and in particular Deep Learning, has begun to revolutionize medical
imaging though the optimization of diagnostic and prognostic estimations at the
individual-patient level. On the other hand, the spread and availability of high quality
non-invasive imaging has provided growing amounts of data in the characterization
of suspected cardiovascular diseases. At the same time, modern combined imaging
equipment has set the ground for the concept of hybrid imaging to develop.
Cardiac hybrid imaging refers to the combination of diagnostic images and offers
the possibility to comprehensively characterize the heart and great vessels when a
pathology is suspected or clinically known. Analysis and integration of large amounts
of cardiac hybrid imaging data (and corresponding clinical profiles) constitutes a
highly complex process and ML will likely be able to enhance it in the near future.

Conclusion: ML conveys novel and powerful approaches in the processing of large
and complex datasets that may include images as well as imaging-derived data.
Given the growing amount of data in the realm of cardiac hybrid imaging and the
rapid development of ML, it is highly desirable to implement and test ML in the
optimization of our multimodality imaging diagnostic and prognostic evaluations in
cardiovascular disease.
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Background
Machine learning (ML) has rapidly developed within the last years and its extension

into medical sciences offers the potential to revolutionize the way in which complex

diagnostic and prognostic estimations at the level of the individual patient are

performed. At the same time, the spread and availability of high quality (non-invasive)

imaging has provided growing amounts of data in the characterization of suspected

cardiovascular diseases. Analysis and integration of such data constitutes a highly

complex process for which ML seems to provide a novel suitable approach. Presently, the

combination of informative data obtained through medical imaging delineates the realm
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of hybrid imaging. Hence, it is only germane to outline the concepts, evidence and poten-

tial of ML within the context of the emerging demands of cardiac hybrid imaging.

The present narrative review will summarize the fundamental notions in ML as well

as the evidence of its application in standard cardiac imaging. Thereon, the potential

for implementation in order to address particular needs conveyed by cardiac hybrid

imaging will be discussed.

The concept and rise of ML

ML constitutes a swiftly growing field located at the intersection of computer science,

statistics and subject-matter expertise (in our case, cardiac hybrid imaging) (Fig. 1). ML

is not a single method but rather a family of algorithms with a particular feature, i.e.

the ability to learn complex patterns from data through an iterative process (training).

The objective in ML is viewed as an optimization problem with aims to elucidate, re-

fine and apply the learned patterns in order to predict or classify unseen data (testing).

Adequate generalization to independent data is assumed when prediction or classifica-

tion performance tracks the one reported for the original training and testing phase.

Many of the algorithms considered in ML are not formally new. For instance, the

base computational models that paved the way for artificial neural networks date back

to the 1940’s. The reason why ML has just recently grown into a major topic within

other areas of scientific research is that currently, we find ourselves in the cross-roads

Fig. 1 ML arises from the interaction of computer science and statistics in the way that conventional
research approaches incorporate statistics and subject matter expertise. In the near future the integration of
software development, expert matter research and ML will lead to powerful task-oriented artificial intelligence
to aid in the diagnostic and prognostic evaluation of cardiovascular patients. AI, artificial intelligence
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of three necessary components for its implementation, namely: a complex problem,

large amounts of data and sufficient computational power.

Biological problems, such as cardiovascular diseases, are adequate examples of

complex problems. The patent and suspected interrelations at every level of human

(patho) physiological processes are considerably intricate. This notion is contained in

the concept of precision medicine. Ultimately, precision medicine presumes that the

individual patient is a conjunction of all the particular patterns that distinguish the

subject and his/her manifestation of a disease from the rest of the people, and that this

profile can and should be harvested in order to individualize treatments and risk esti-

mations. Such patterns can be found in all interactions in the gene-protein-anatomy-

function continuum.

Currently, larger amounts of data are available to researchers as we have witnessed

exponential gains in storage capacity in the last decades. But subtle and complex

patterns within data can only be deduced in as much as large sets of representative data

can be utilized. In this sense, organized efforts to overcome accessibility and

standardization problems are being undertaken.

Finally, the third component is sufficient computational power. The amount of

calculations performed when comprehensively evaluating all possible interrelations

within datasets and the amount of available data mutually enhance the computational

time required for such operations. The advent of new graphics-processing units has

allowed us to boost processing speed, making it possible to operate within the limits of

practicality.

Types of learning

One can classify ML approaches in terms of the type of learning process they utilize.

Overall, there are four types of learning: supervised, unsupervised, semi-supervised and

reinforcement.

Supervised learning works through the utilization of labeled data (i.e. data which has

been effectively classified or for which the outcome value is already known). This label-

ing may have been done by an expert physician (e.g. a radiologist that diagnosed the

presence of a cardiac mass, a nuclear physician who annotates a perfusion defect in the

anterior wall of the left ventricle or a cardiologist who identifies cardiac involvement in

a patient with sarcoidosis) or by a data manager who has confirmed vital status and/or

adverse outcomes in the electronic health record of a given subject. Learning then takes

place by allowing the algorithm to make a classification or prediction, then comparing

it to the known label in order to support or penalize the result and adjusting the model

accordingly in order to refine its performance. While supervised learning has obtained

remarkable results (i.e. studies in different medical fields achieve performances compar-

able to the ones of expert clinicians [diabetic retinopathy (Gulshan et al., 2016) and

skin cancer (Esteva et al., 2017) labelling the data can be remarkably time consuming

(e.g. segmentation).

Unsupervised learning, conversely, does not utilize available labels or known out-

comes in order to elucidate patterns within the data. It can be useful to identify novel

clusters among, for example, patients originally considered to present with the same

disease without the bias of our established disease phenotypes. As novel as such new

clusters may be, it is yet up to the human observers to decide whether such
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differentiations are of value in order to improve treatments and outcomes. In other

words, to make sure that what we obtain are not distinctions without differences.

Semi-supervised learning falls somewhere in between the two aforementioned types

of learning. It utilizes labeled and unlabeled data (mostly a smaller quantity of the

former) in order to optimize the efficiency of classification. Semi-supervised learning is

mainly useful when the human-power necessary to provide full labeling of all working

data exceeds practical possibilities. However, it also conveys the advantage of keeping

some distance from intrinsic biases provided by human operators, which probably exist

even when such operators are considered experts.

Finally, reinforcement learning is considered when there is a conjunction of other

types of learning with the underpinning of constant trial and error. Reinforcement

learning progresses without an initial notion of the objective and relies on constant

interaction with new conditions and input in order to maximize the reward or benefit

(performance), even if not immediately. Most notable examples of reinforcement

learning can be found outside the medical field such as self-driving cars and advance

systems for game implementations (e.g. AlphaGo Zero (Silver et al., 2017)).

ML algorithms and the special case of deep learning

The range of supervised ML algorithms is wide, their foundations, weaknesses and

strong points are different but their objectives are constant. Every approach aims to

classify (separate) or predict data as effectively as possible. K-nearest neighbors (k-NN),

for instance, is a simple algorithm that classifies data points according to the most

common class represented in the “k” (i.e. an adjustable parameter) nearest neighboring

data points within the data space. Support vector machine (SVM) is another useful

algorithm which aims to construct classification models by transforming a subset of

predictors in a multidimensional space where it then can find a non-linear boundary with

the widest (and therefore the best) separation between classes (Smola & Schölkopf, 2004).

A simple graphic depiction of how data separation can, in many instances, be achieved at

higher dimensional spaces is shown in Fig. 2. Decision trees (or regression trees, depend-

ing on the nature of the objective) represent another approach in ML in which individual

Fig. 2 Data separation at a higher dimensional space. When optimal data classification cannot be achieved
linearly, separation could be achieved at higher dimensions when considering more correlated variables.
This concept is not restricted to 3D and can be undertaken at n dimensions

Juarez-Orozco et al. European Journal of Hybrid Imaging  (2018) 2:15 Page 4 of 15



predictors are aggregated or used sequentially to separate a subset of data in order to de-

termine its class value (outcome label). When several decision trees are built and aggre-

gated the resulting method is called random forest (Random Forests, 2001), and when

they are used sequentially as ensembles they are called extreme gradient boosting. Yet

another example is that of the naïve Bayes algorithm. This approach aims to classify data

instances by a simple probabilistic approach that uses the pre-probability (prevalence) and

the likelihood of belonging to a specific class (Miranda et al., 2016).

Overall, every method conveys both advantages and disadvantages, and knowledge of

the algorithms is paramount in order to select the better suited, based on the character-

istics of a specific problem and dataset. A quick view of common ML algorithms along

with their main advantages is shown in Table 1 (the list is not meant to be exhaustive).

Then there is the case of artificial neural networks (ANNs). These algorithms were

originally inspired in the architecture and function of biological neurons. ANNs are

formed by layers of processing units (neurons) through which the learning process is

conducted in an iterative two-step sequence. First, for each subsequent layers, informa-

tion is carried forward to each neuron of the later layer by applying weights to the

values of the neurons of earlier layers. The resulting values are then added and an

activation function is applied. Once the processing delivers a result in the output layer,

supervised learning can be used to compare the classification results to that of the

known labels. In the second step, the errors in classification are carried backwards in

the network in order to adjust the weights applied in the connections between process-

ing units. In this way, the estimations are iteratively improved and the accuracy of the

classification is optimized. The basic architecture of an ANN is depicted in Fig. 3.

The reason why only until recently the interest in ANNs has reshaped ML is two-

fold: first, the high computational power currently at our disposal, and second, the

superior performance of recent network architectures (e.g. Inception (Szegedy et al.,

2015), Resnet (He et al., 2015), U-Net) and refinements in the operations performed in

the processing units (batch normalization (Ioffe & Szegedy, 2015) and rectified

(Krizhevsky et al., 2012) or exponential non-linear activations (Clevert et al., 2015).

These optimizations have allowed researchers to unleash the power of deep convolu-

tional neural networks (CNNs) in tasks that use data with very high dimensionality

such as images. This collection of applications is what is now commonly known as

Deep Learning and it has started to demonstrate contributions in medical imaging.

In general, ML modelling is performed by data parcellation into a training and a

testing dataset. Traditionally, a 60:40 or 70:30 split have been used, but a number of

concerns based on possible unbalance of positive and negative cases have promoted the

incorporation of resampling methods such as cross-validation in order to be able to

utilize all available data for both purposes. This delivers robust performance estima-

tions that provide a confident overview of the capacities of the ML models generated.

A depiction of the steps involved in data handling in ML modelling is shown in Fig. 4.

ML applications in cardiac imaging tasks

Feature selection and feature engineering

A successful ML workflow can be generated by considering two sequential processes,

namely, feature selection and modelling. In feature selection, the variables that contribute
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the most with the task at hand according to a specific model are selected. Although this

may somehow resemble the way in which predictors are selected based on their univariate

correlations with the outcome variable in traditional linear statistics, ML feature selection

commonly explores the relevance of the predictors and their interactions in non-linear

ways and at a higher dimensional level. This means that relevant variables can potentially

Table 1 Overview of advantages and disadvantages of commonly utilized machine learning
algorithm clustered by utilized type of learning

Learning
Type

Purpose Algorithm Advantages Disadvantages

Unsupervised Clustering K-means • Intuitive algorithm with
linear relative computational
complexity

• Number of clusters or classes
must be defined by user

• Poor performance with clusters
of irregular shapes

Mean Shift • No need to select number of
clusters or classes

• Utilized window size must be
defined by user

DBSCAN • No need to select number of
clusters or classes

• It can identify points as noise
and cluster with irregular
shapes

• Windows size must be defined
by user

• Reduced performance when
clusters have different densities

Expectation-
Maximization

• It can identify clusters with
ellipsoidal shapes

• It assigns membership
probabilities to each point

• Number of clusters or classes
must be defined by user

Supervised Classification Logistic
Regression

• Good performance with
small datasets

• Its output can be interpreted
as a probability

• Data assumptions are needed
to be complied

• It can only provide linear
solutions

K-Nearest
Neighbors

• Intuitive algorithm • Number of neighbors must be
defined by user

• High relative computational
complexity

Naive Bayes • Performs well in small
datasets if conditional
independent assumption
holds

• Assumption of independence
between features

Support
Vector
Machines

• It can provide non-linear
solutions

• To achieve good performance,
they require knowledge about
the kernel employed

Decision
trees
ensembles

• They can handle categorical
features

• Few parameters to tune
• They perform well in
datasets with large number
of features

• Interpretability of ensemble can
be questioned

Neural
Networks

• State-of-the-art results
• Direct complex image
processing

• Many parameters to fine-tune
• Large number of samples are
required to achieve good
performance

Regression Linear
(LASSO,
Ridge)

• Good performance with
small datasets

• Data assumptions are needed
to be complied

• Can only provide linear
solutions

Decision
trees

• They can provide non-linear
solutions

• Interpretability of ensemble can
be questioned

Segmentation U-Net • One stage algorithm with
good performance and
variants

Mask-RCNN • State-of-the-art performance • Two-stage algorithm
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be selected more efficiently and without compromising possibly relevant interactions that

are relevant in distinguishing groups of subjects or predicting continuous outcomes.

Deep learning in this case, is also noteworthy. Unlike other models that require

features to be created in a preliminary process, CNNs have the ability to generate

optimal features based on the raw data (i.e. images). Therefore, they not only inherently

Fig. 3 Basic architecture of an ANN. Input information is carried forward through the layers of processing units
to perform a classification of prediction task. In supervised learning, the estimated error of initial estimations is
carried forward in order to adjust the connection weights and improve performance iteratively

Fig. 4 Data handling throughout ML modelling
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employ the most relevant features, but they also add a component that is not present

on other models.

Automation of detection and segmentation

ML has been used in the automation of detection and delineation tasks. For instance,

SVM was used by Kang and colleagues in order to automatically identify atherosclerotic

lesions on coronary computed tomography angiography (CCTA) images with an accur-

acy well above 90% (Kang et al., 2015). An engaging early report by Išgum and

colleagues described automatic calcium scoring (CaSc) in low-dose CT scans using and

merging the results of two ML algorithms (k-NN and SVM) (Isgum et al., 2012). Later,

deep learning has been utilized with a similar intent demonstrating moderate to good

results (Wolterink et al., 2016; Lessmann et al., 2017).

In echocardiographic imaging, cardiac magnetic resonance (CMR) and computed

tomography, segmentation of (dynamic) views of the left ventricle, boundary detection

and measurement derivation constitute interesting targets for ML. Knackstedt et al.

documented the utilization and superiority of an original ML-based software in the

automatic measurement of left ventricular ejection fraction and longitudinal strain

(Knackstedt et al., 2015). Ngo and colleagues merged deep learning and level set for

ventricular segmentation in cine CMR images in a discrete sample advancing the steps

towards full task automation (Ngo et al., 2017).

Cardiovascular diagnosis

ML has been utilized to try to optimize detection of coronary artery disease (CAD).

Mohammadpour and colleagues, for instance, defined important risk factors for CAD

and then identified patients who would not need an invasive evaluation of CAD with

high accuracy (93%) (Mohammadpour et al., 2015). Further, Xiong et al. used an

ensembles approach to assess myocardial perfusion CCTA images for the detection of

significant CAD (Xiong et al., 2015). Similar work was performed more recently by

Zreik et al. They reported the use of a sequential approach that included CNN-based

segmentation, convolutional autoencoding and SVM classification of suspected myocar-

dial ischemia in rest CCTA (Zreik et al., 2018). Another report also studied the

utilization of ML in the form of boosted ensembles in order to predict early CAD

revascularization indications (Arsanjani et al., 2015).

Finally, Dey and colleagues have reported on the utility of ML and boosted ensembles

for the detection of plaque-specific ischemia through CCTA (AUC = 0.84) using inva-

sive FFR as reference (Dey et al., 2018). Their report concentrated on the integration of

plaque features and their integration into a strong classifying score, an advantage

offered by iterative ML algorithms.

Cardiovascular prognosis evaluation

Another objective that has been addressed with the implementation of ML algorithms

is the improvement in the prognostic value of cardiac imaging. In this sense, Berchialla

and colleagues were among the firsts to describe the use of ML in the form of a

Bayesian Network to evaluate predictors from stress echocardiography and CCTA in

the prediction of myocardial infarction or death. Moreover, they described the incre-

mental performance of ML against traditional logistic regression (Berchialla et al.,

2012). Thereon, Motwani and colleagues utilized CCTA measurements characterizing
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atherosclerotic plaques, demonstrating an improvement in the 5-year prediction of

mortality (Motwani et al., 2016). Lately, the same group was able to demonstrate an im-

provement in the 3-year predictive capacity for the occurrence of major adverse cardio-

vascular events (MACE) when implementing a ML workflow that integrated single

photon emission computed tomography (SPECT) perfusion data and electronic health

record clinical variables (Betancur et al., 2017). Given that quantitative positron

emission tomography (PET) imaging has also demonstrated robust prognostic value

(Juárez-Orozco et al., 2017), ML implementations in PET prognostic data for the classi-

fication of patients who will experience particular MACE are warranted.

Cardiac disease profiles exploration

A remarkable implementation has been the use of unsupervised ML for the identi-

fication of cardiac disease profiles. In particular, ML has been used in echocardiog-

raphy in order to characterize healthy and diseased hypertrophic states (Narula et

al., 2016), while ML-based phenomapping has now been used to evaluate heart fail-

ure with preserved ejection fraction for new and clinically relevant disease pheno-

types (Shah et al., 2015).

The nature of hybrid imaging

Available non-invasive techniques can be robustly divided by the kind of information

they convey and reports of their diagnostic and prognostic performance have generally

taken place independently, as stand-alone modalities. There are techniques such as

CCTA that are mainly deemed as anatomical (although contemporary developments

are extending the application of CCTA beyond anatomy and into ventricular function,

myocardial perfusion and even FFR evaluation [FFRCT]), while others can evaluate the

pattern and distribution of specific physiological processes, such as perfusion, viability,

innervation and angiogenesis, within the myocardium (i.e. SPECT and positron emis-

sion tomography [PET]). Furthermore, echocardiography can easily provide prompt as-

sessment of ventricular motion and dynamic insights of the heart’s function. Finally,

CMR can offer both anatomical and functional information, such as motion evaluation

of the ventricles, myocardial mass and tissue content or composition based on numer-

ous developed acquisition sequences.

The clinical benefit (beyond the research value) of the data provided by the afore-

mentioned range of approaches follows especially when such information is comple-

mentary in nature (e.g. anatomical and functional), rather than overlapping (e.g.

anatomical and anatomical). Consequently, the concept of hybrid imaging has rapidly

gained popularity.

A multimodal approach, ideally boosted by ML-based optimizations, can deliver

insight into different aspects of the status of the cardiovascular system could improve

identification and characterization of CAD, heart failure, etc. The expected benefit,

therefore, boils down to the additive value of the strengths from stand-alone tech-

niques, and at the same time, the overcoming of their independent pitfalls. However, it

is possible that the speed of adoption of the concept has obfuscated the general

principle that researchers and clinicians assign to hybrid imaging. Already by 2009 the

European Society of Cardiology put forward efforts to define and substantiate the
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concept of hybrid imaging. It was suggested that the term should be applied when “im-

ages are fused combining two data sets, whereby both modalities are equally important

in contributing to image information…” (Knuuti & Kaufmann, 2009). However, there is

a variety of situations where the concept may demonstrate some fluidity.

Hybrid imaging may refer to simultaneous acquisitions in integrated protocols using

equipment that feature two imaging techniques. This is the case for modern PET/CT,

SPECT/CT and PET/MR studies. “Simultaneous” is understood in these cases as

“within the same imaging session”. Furthermore, the large array of radiotracers utilized

in the nuclear component of these hybrid equipment opens the possibility to image

more than one physiological aspect of the coronary-myocardium continuum. Although

dual tracer imaging within the same imaging session has not been established in the

cardiovascular area, performing separate PET scans using a perfusion tracer (82Rb,
13N-ammonia or 15O-H2O) plus CCTA and a glucose-metabolism tracer (18F-FDG)

for myocardial viability demonstrated utility to a certain extent. Interestingly,

although current cardiac PET/CT scanning makes obligatory use of the CT

information for attenuation correction, the hybrid imaging label is not applied

whenever “full” CCTA is not performed even though such correction is may be

seen as inherently important for providing adequate images.

One can also consider hybrid imaging the simultaneous interpretation of individually

obtained scans. In this case, “simultaneous” conveys a parallel or side-by-side

visualization of images. Moreover, it can also imply the purposeful fusion of images in

order to track a suspected anatomical origin (e.g. atherosclerotic plaque) of a function-

ally patent abnormality (regional myocardial ischemia). However, although there are

dedicated software extensions for such purpose, such fusion is ultimately a process that

clinicians perform in the presence of complementary imaging information independ-

ently from the refinements of the software they work with. Notably, there are com-

monly instances when clinicians ponder complementary information from independent

tests (e.g. echocardiography and CCTA). This is not per se considered as hybrid

imaging although the modalities may provide equally important data for diagnostic and

prognostic purposes.

Finally, another possibility is when sequential and selective application of comple-

mentary techniques is performed as an established workflow in patients within certain

limits of pre-test probability of disease. In this situation additive (hybrid) information is

obtained with a confirmatory objective when the initial results of an individual tech-

nique are positive for the suspected disease.

A niche for ML in cardiac hybrid imaging

The potential for ML implementation in cardiac hybrid imaging follows from the

notion that the combination of data provided by complementary imaging methods can

enrich and improve our confidence on the presence, origin and clinical significance of a

suspected cardiovascular condition. Given that ML algorithms have increasingly been

applied in the described range of tasks pertaining to non-invasive imaging modalities,

as well as in the integration of image-derived data and clinical data, it is likely that

improved results will translate an additive utility in accelerating processes and refining

the characterization of patients who undergo cardiac hybrid imaging.
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With the spread of powerful non-invasive cardiovascular diagnostic approaches, clini-

cians are now provided with an increasing amount of information regarding the (patho)

physiological status of the heart and the great vessels of a given patient. ML is likely

suitable in combining data provided by individual techniques and in addressing the

complexity of such data, which ranges from standard numerical variables to entire 2-,

3- and even 4-dimensional images in standardized or unstandardized formats. Further-

more, it is understood that imaging data should be integrated with the outlook offered

by electronic health records, which contain demographic, clinical, and biomarker mea-

surements. This coupling is highly desired as it may allow us to further understand the

nature and development of cardiovascular disease, but it has been deemed as challen-

ging. It is within this scenario that the recent explosion of ML is expected to impact

the way in which we analyze data provided by a variety of sources and use meaningful

information to optimize the diagnostic process and prognostic assessment of individual

patients. We believe this may further expand the conceptual framework understood as

hybrid imaging by itself.

It should be noted that ML in cardiovascular clinical research has predominantly

been utilized for the analysis of numerical data obtained from stand-alone imaging

techniques. In this scenario, numerical predictors translate particular characteristics of

a pathophysiological process but it is being demonstrated that larger benefits may be

obtained from the analysis of hybrid images directly irrespectively from the particular

definition applied.

Deep learning has revolutionized the way in which complex sets of data can be ana-

lyzed and classified. Wide and deep neural networks can define image characteristics

that optimize the classification of complex images. The seminal paper by Esteva et al.

has already demonstrated how a complex classification of benign and malignant skin

lesions can be reliably performed by deep learning (Esteva et al., 2017). Stand-alone

cardiac imaging has already seen the benefit of such analyses and cardiovascular hybrid

imaging will likely see implementations of such principles when the challenges of image

complexity, integration and amount of available data are overcome.

On the brink

The potential of ML in the setting of hybrid imaging is considerable. Hybrid imaging

conveys the availability of a full set of data (in several forms). Although no major report

has addressed the utilization of ML on hybrid imaging data per se, we believe that the

path is becoming clearer.

Future analyses will possibly aim to integrate ML-based methods in order to manage

data arising at different levels of the diagnostic workup (i.e. different diagnostic tech-

niques). Particular approaches will yield better results according to the operationalized

variables. For example, pre-processed and even raw images will surely benefit from very

deep CNNs, while numerical data on clinical variables may possibly benefit from

boosted ensembles of simpler and faster algorithms that deliver robust estimates. An

optimistic example could be the integration of CCTA anatomical data with (PET)

myocardial perfusion and plaque metabolism data, which can then be enriched by com-

prehensive clinical and hemodynamic data in order to better comprehend the blueprint

of unstable or risky atherosclerotic disease.
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The capacity of ML to apply results from individual algorithms as inputs into further

learning processes in order to accomplish the task at hand whatever we chose it to be,

e.g. refining diagnosis with new disease phenotypes or optimizing risk stratification

evaluations, must be well understood This is possible due to the notion that ML can be

implemented as a workflow with distinguishable sections, which may deal with

independent sets of cardiovascular data. An outline of the components of an integrated

ML workflow is presented in Fig. 5.

The black-box

There is some concern on the interpretability of the “intermediate steps” undertaken in

deep learning. These take place in the so-called hidden layers of the CNNs, which lay

between the input and the output. Efforts have been conducted to characterize the na-

ture of such intermediate interpretations. It has been shown how, in image recognition,

some initial layers start aiming to detect lines, borders, angles and shadows within the

image input. This information then progresses to higher levels of integration that

become increasingly abstract and therefore, difficult to interpret in any meaningful

way. This black-box phenomenon is of relevance and opinions on how much import-

ance it should be given vary. On the one side, it is true that blind trust in an algorithm

could generate problems when the system and the generating data might suffer from

known or unknown biases. But on the other hand, it is also true that the type of

Fig. 5 Areas for implementation of ML algorithms in hybrid cardiovascular imaging. Integration of complex
data provided by individual techniques, which can be acquires within the same imaging session, is likely to
provide a better discrimination between cases and can allow for better estimations in unseen data for
classification or prediction purposes at the individual level
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appraisal that deep learning algorithms perform is constitutionally different from that

applied by humans.

There will probably have to be some compromise in this sense. We will have to

remain vigilant of the possible input of biases (even if human), while allowing for the

systems to deploy their whole potential for performing better classifications or predic-

tions. This can be promoted by the creation of the aforementioned step-wise workflows

that implement ML in independent types of data that can be later integrated with

confidence on the validity of the sequential results.

Emerging issues

With the continuous expansion of ML-applications, it will become primordial for

clinicians and medical professionals to adapt their data procedures and infrastructure,

as perhaps the biggest current impediment for machine learning implementation to

clinical problems is the amount of available and organized data. Better communication

and collaboration between clinical systems, an activity pursued by many researchers

and health care administration professionals, will accelerate this process.

Notably, a previous obstacle was the infrastructure required to store and analyze very

large datasets. A solution taken by many entities that can be emulated in medical sci-

ences is to outsource the task managing data infrastructure to an expert separate entity

provided with adequate security provisions. Using platforms of specialized data centers

can lead to a simpler, more reliable, secure and scalable processes while the front-line

clinical departments maintain control over the data and emerging analyses.

A perspective of the future

As intensive research is being performed in order to improve algorithm selection and

fine-tuning, we believe that support (and even independent) systems will eventually be

able to provide on-the-flight evaluation of hybrid imaging-derived information together

with the clinical profile that can inform the decisions of both clinicians and scientists

in their encounters with patients at the individual level in terms of therapeutic actions

and risk appraisal.

ML is bound to keep revolutionizing the ways we understand cardiovascular disease

through imaging due to its dynamic nature and possibility to perpetuate the learning

process as more data will be inevitably available.

Conclusions
ML conveys novel and powerful approaches in the processing of large and complex

datasets that may include images as well as imaging-derived data along with compre-

hensive and potentially relevant clinical data. As such, ML has begun to revolutionize

medical imaging and currently available reports in cardiac imaging have focused on

automatization and classification tasks in stand-alone techniques.

Given the growing amount of data in the realm of cardiac hybrid imaging and the

rapid development of ML, it is highly desirable to implement and test ML in the

optimization of our multimodality imaging diagnostic and prognostic evaluations in

cardiovascular disease.
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