Early on, preclinical imaging involved mainly physicists, chemists and engineers. Their scientific and technical skills are now progressively complemented by others coming from the biological and clinical fields. Thus, increasingly, more clinicians have developed preclinical laboratories to establish links between clinical and experimental approaches. The increasing use of preclinical imaging requires professionals who can put imaging procedures into action, ensuring a significant success-throughput required to obtain high statistical power, while taking care of each individual as a patient. NMTs and radiographers have the experience and skills to occupy these positions. In the process of translating from clinics to a preclinical environment, the NMTs and radiographers must acquire specific legal and training developmental competencies on the handling and care of laboratory animals. Such training must be adapted to the target animal experimentation species, as welfare needs vary for different species. It is fundamental that a close bond is built between the designated veterinarian, animal welfare officer and staff, as to successfully transfer the fundamental knowledge and responsibility in respect to animal welfare in the preclinical setting.
Although NMTs and radiographers are trained in the use of clinical imaging equipment, an adaptation period is necessary for learning the use of preclinical devices designed specifically for small animals, with software interfaces being less user-friendly in general than those encountered in the clinical field.
Even if NMTs and radiographers have a significant number of skills (England et al. 2017) that can be transferred directly to preclinical imaging, additional training is mandatory concerning the handling and care of laboratory animals for regulatory, ethical and scientific reasons. A multidisciplinary strategy in close cooperation with veterinaries and animal staff must be encouraged in order to increase logistics effectivity and expand the NMT and radiographer responsibilities.
Each individual should be considered as a patient and treated as such. Maintaining homeostasis under experimental conditions could be challenging, as even small differences, for instance, in temperature, could lead to dramatic quantitative discrepancies (Goetz et al. 2017). Applying precise procedures and taking care of each individual is fundamental for obtaining reliable data and following good research practice (Bespalov et al. 2019).
In fact, there are specific regulatory requirements for the training and development of competence for anyone undertaking any work with laboratory animals. Complying with transparent scientific reporting (Kilkenny et al. 2010) and ensuring that all studies are planned and executed with appropriate experimental designs are requirements (Smith et al. 2018).
In the EU, any work must be in full compliance with the EU Directive 2010/63/EU and also supported and approved by the institutional animal ethical body or the Institutional Animal Care and Use Committees (IACUCs) in the USA. So, based on this robust legislative framework, the radiographer or NMT involved in a preclinical imaging lab holds a real professional responsibility to ensure compliance and should also be involved in education in this field.
As a consequence, the holding of a training certificate in animal experimentation is necessary to meet the regulatory restriction, though requirements vary regionally and nationally. Once these restrictions have been overcome, NMTs and radiographers can advance to perform the following acts independently (Fig. 5):
-
Animal preparation (anaesthesia, installation of vascular approaches, monitoring)
-
Animal positioning in imaging cell and in imaging devices
-
Animal monitoring during a procedure
-
Acquisition parameters, programming and setting
-
Archiving and data processing
-
Anaesthesia recovery
-
Post-awakening animal management
-
Device quality controls
-
Surface cleaning and disinfection
-
Radioactive and biological waste management
-
Radiation safety (for users)
-
Use of hot lab equipment and auxiliary equipment
-
Injected products and material management
In some instances, the duration of preclinical imaging procedures could present some additional challenges when compared to clinical scanning. For instance, a complete preclinical procedure (from the preparation of the animal to the end of the data acquisition) including 2 imaging modalities (ex: PET and MRI) can reach > 90 min. If multiple animals are being imaged, these can be even longer and challenging to schedule appropriately. One solution to this has been the use of 3D printed beds, referred to as hotel imaging. This allows the researcher to image 2–4 animals at a time (Greenwood et al. 2019; Dazai et al. 2011).
Thanks to their technical and clinical experience, NMTs and radiographers can easily position themselves in this kind of structure. In fact, most laboratories that have integrated NMTs and radiographers confirm that their technical expertise and practical knowledge improves the flow of acquisitions, which allows researchers to be more focused on more academic aspects (bibliographic research, analysis of results, communication and scientific articles preparation); thus, the NMT and radiographer can be considered a “research facilitator” (Fritsch and Dillenseger 2015).
The preclinical laboratory setting can benefit from the practical expertise of NMTs and radiographers for the development of procedures that are as close as possible to clinical practices. This facilitates the translation of results from animals to humans and could even check the feasibility and the soundness of a suggested protocol. Moreover, a radiographer or NMT could promote specific research on adequate imaging procedures and be able to respond to fundamental or practical scientific questions. This is why NMTs and radiographers could also be involved in staff meetings as “practical experts” and as research “collaborators” (Harris and Paterson 2016). Indeed, the translational and multidisciplinary aspect of preclinical research, should result in proactive clinic-based initiatives, that in its turn result in optimised procedures for the benefit of the animals subject to imaging.
To date, despite their considerable strengths, the involvement of NMTs and radiographers in preclinical imaging remains rare for various reasons:
-
First, preclinical researchers are not aware of the existence of these professions and their level of expertise. Additionally, NMTs and radiographers may not be aware of the existence of such laboratories that could be potentially interested in their know-how.
-
Second, integrating this kind of department requires the NMT or radiographer to leave their traditional work environment and consequently their comfort zone to take on new work habits and to assimilate new “codes” and new knowledge specific to the research sector.
-
Third, the integration of an NMT or radiographer in a research unit is generally done on research funds and limited in time, depending on the projects of the laboratory. Consequently, the employment contracts offered are generally precarious because succession and accumulation of fixed-term contracts and subsequently obtaining a permanent professional situation remain difficult.
-
Fourth, it may be challenging to obtain the same level of compensation as in the clinic.